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*1

 

This work is put forth from a totally different per-
spective than the one considered herein. We are not
going to reinforce this substantial perspective through
this paper. Nevertheless, we should state it briefly since
it allowed us long ago to derive practically everything
that we present herein [1–4].

Thus, it was the author’s original idea that, in order
to insure the validity of the theory of relativity, in any
entity existing in nature, the architecture of the internal
dynamics it displays ought to be constructed in a certain
manner.

In effect, any natural entity has an internal dynam-
ics; it works as a clock bearing a clock period 

 

T

 

0

 

. The
dynamics in question involves a given mass 

 

M

 

0

 

, which
we call the “clock mass,” installed in a space of size 

 

R

 

0

 

.
The clock mass, as we shall see, is not a trivial quantity;
nonetheless, it is not the total mass of the entity in hand.
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Miami; he was further honored by Professor Basov’s invitation to
the XII European Conference on Laser Interaction with Matter,
held in 1978 in Moscow. The author continues to enjoy the privi-
lege of pursuing collaboration with colleagues of the Lebedev
Physical Institute.
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This article was submitted by the author in English.

 

It is usually a complex mass that carries the oscillation
motion of the internal dynamics under consideration.

One can define several clock masses for the same
entity with regard to the different internal dynamics it
displays. The clock mass of the electronic motion of a
diatomic molecule, for instance, is the electronic mass

 

m

 

0

 

e

 

, which can be expressed as (a coefficient) 

 

×

 

 (the
electron mass), or merely the electronic mass 

 

m

 

e

 

, where
the coefficient of concern is accounted for in a different
way. On the other hand, the clock mass of the vibra-

tional motion of a diatomic molecule is ,
where 

 

�

 

0

 

 is the reduced mass of the molecule.

Now, the Lorentz transformations on 

 

T

 

0

 

, 

 

M

 

0

 

, and 

 

R

 

0

 

were the object brought into uniform translational
motion or, similarly, the transformations that these
quantities would undergo were the object embedded in
a gravitational field impose that there ought to already
be an intrinsic relationship between 

 

T

 

0

 

, 

 

M

 

0

 

, and 

 

R

 

0

 

,

which turns out to be 

 

T

 

0

 

 ~  [1–4]. This was our
original idea, which we will not stress any further here.

However, to mark this idea, in this paper, we would
like to keep the subscript “0” pinned to the symbols rep-
resenting the mentioned basic quantities defined at rest
(versus the corresponding Lorentz-transformed
quantities).
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Abstract

 

—We consider the quantum-mechanical description of a diatomic molecule of electronic mass 

 

m

 

0

 

e

 

,
internuclear distance 

 

R

 

0

 

, and total electronic energy 

 

E

 

0

 

e

 

. We apply to it the Born–Oppenheimer approximation,

together with the relation 

 

E

 

0

 

e

 

m

 

0

 

e

 

 ~ 

 

h

 

2

 

 (which we established previously), written for the electronic descrip-
tion (with fixed nuclei). Our approach yields an essential relationship for 

 

T

 

0

 

, the classical vibration period, at

the total electronic energy 

 

E

 

0

 

e

 

; i.e., 

 

T

 

0

 

 = [4

 

π

 

2

 

/( )] . Here, 

 

�

 

0

 

 is the reduced mass of the
nuclei; 

 

m

 

e

 

 is the mass of the electron; 

 

g

 

 is a dimensionless and relativistically invariant coefficient, roughly
around unity (this quantity is associated with the particular electronic structure under consideration; thus, it
remains practically the same for bonds bearing similar electronic configurations); and 

 

n

 

1

 

 and 

 

n

 

2

 

 are the principal
quantum numbers of electrons making up the bond(s) of the diatomic molecule in hand; because of quantum
defects, they are not integer numbers. The above relationship holds generally, although the quantum numbers

 

n

 

1

 

 and 

 

n

 

2

 

 need to be refined. This task is undertaken in our next article, yielding a whole new systematization
regarding all diatomic molecules. 
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In this paper, we will present a derivation of the rela-
tionship we conjectured between 

 

T

 

0

 

, 

 

M

 

0

 

, and 

 

R

 

0

 

, chiefly
for diatomic molecules, through the Born–Oppenhe-
imer approximation, and a fundamental relation we
derived previously, which we shall briefly sketch. We
will elaborate on quantum numbers that come into play
in Part 2 of this work; our approach yields an empirical
relationship established back in 1925. We will conclude
with a novel systematization of all diatomic molecules.

We are embarrassed to be unable to furnish basic
references other than our work; however, we found
nothing similar to what we present herein.

THE UNIVERSAL MATTER ARCHITECTURE 
RELATION

For an atomistic or molecular wavelike object exist-
ing in nature, we have shown elsewhere the following
assertion, first, on the basis of the Schrödinger equa-
tion, as complex as this may be, and then on the basis
of the Dirac equation (whichever may be appropriate in
relation to the object in hand) [4].

 

Assertion 1.

 

 In a real wavelike description com-
posed of 

 

I

 

 electrons and 

 

J

 

 nuclei, if the (same) electron
masses 

 

m

 

i

 

0

 

, 

 

i

 

 = 1, …, 

 

I

 

, and in general different nuclei
masses 

 

m

 

j

 

0

 

, 

 

j

 

 = 1, …, 

 

J

 

, involved by the object are over-
all multiplied by the arbitrary number 

 

γ

 

, then, concur-
rently, (1) the total energy 

 

E

 

0

 

k

 

 associated with the given
clock motion of the object is increased as much and (2)
the size 

 

R

 

0

 

k

 

 of the object in which the given clock
motion takes place contracts as much; in mathematical
words, this is

(1)

By “real,” we mean not “artificially gedanken”; for ato-
mistic and molecular wavelike objects, “real object”
means an object embodying a potential energy made of
just Coulomb potentials.

If the object is an atom, then 

 

R

 

0

 

k

 

 is its radius; if the
object is a diatomic molecule, then 

 

R

 

0

 

k

 

 is the internu-
clear distance, etc.

As we will see, the operation consisting of multiply-
ing the masses of concern by an arbitrary number 

 

γ

 

,
within the framework of the above assertion, can be in
fact not as arbitrary as one may think it is at first glance.
Indeed, 

 

γ

 

 can well point to the mass change when the
object is brought into uniform translational motion or
planted in a gravitational field or in any field with which
the object in hand can interact.

Anyhow, the occurrence stated by Eq. (1) yields an
invariance, interestingly, linked with the square of
Planck’s constant, 

 

h

 

2

 

.

mi0 i = 1 … I, , ,( ) γmi0 i = 1 … I, , ,( )[ ] ,{
m j0 j = 1 … J, , ,( ) γm j0 j = 1 … J, , ,( )[ ] }

⇒ E0k γE0k[ ] R0k R0k/γ[ ],{ } .

This is the content of our Assertion 2, restated
below.

Assertion 2. The quantities E0kM0k  (k = 1, …, K)
(associated with the kth internal motion of the wavelike
object in hand) are invariant in regard to a mass change
and are all linked with h2.

Thus, the grand total energy E0(GrandTotal) becomes

(2)

We call this occurrence the universal matter architec-
ture (UMA) relation.

Note that, primarily, what we do here is not a dimen-
sional analysis. Anyhow, the occurrence we disclose

would not work (i.e., E0kM0k , for the given clock
motion, would not be invariant in regard to a mass
change) if the wavelike object in hand were not “real,”
though of course there would still be no problem
dimensionwise.

Soon we shall determine that the proportionality
constant embodied by Eq. (2), in addition to a usual
geometry factor and quantum numbers, fortunately, is
made of a “transferable constant”; indeed, this constant
seems to depend on just the electronic configuration of
the molecule. Therefore,

(i) it remains the same regarding the electronic
states of a given molecule, provided that these states are
similarly configured electronically;

(ii) furthermore, it stays the same regarding the
ground electronic states of molecules belonging to a
given chemical family, bearing similar electronic con-
figurations.

Below, we provide a direct derivation of Eq. (2),
mainly for the electronic motion of a diatomic mole-
cule, based on the Schrödinger description of it.

THE BORN–OPPENHEIMER 
APPROXIMATION

The quantum-mechanical description of a diatomic
molecule can be achieved via the usual Schrödinger
equation, involving the two nuclei and the surrounding
electrons. This equation, through the Born–Oppenhe-
imer approximation, is reduced to the separate descrip-
tions of the nuclear and electronic motions. We thus

R0k
2

E0 GrandTotal( ) E01 E02 … E0k …,+ + + +=

E0k
h

2

M0kR0k
2

------------------, k∼ 1 … K ., ,=

R0k
2
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come to solve separately the two following Schrödinger
equations, written with the usual notation [5]:

(3)

(4)

Here, A and B designate the nuclei and e designates the
electrons. We have then the following familiar notation:
mA, the mass of A; mB, the mass of B; ZA, the atomic
number of A; ZB, the atomic number of B; me, the elec-
tron mass; e, the electron charge; rAi , the distance of the
ith electron to A; rBi , the distance of the ith electron to
B; rii ' , the distance between the ith and the ith electrons;
rAB, the distance between the nuclei; ψA, B, e , the eigen-
function associated with the molecule; and EA, B, e , the
eigenvalue associated with the molecule.

Equation (3) describes the vibrational motion of the
nuclei about the internuclear distance rAB to be input
into this equation (for a given electronic state of the
molecule), whereas Eq. (4) describes the electronic
motion around the two fixed nuclei. EA, B is the eigen-
value of the system vibrating around rAB, which may
rotate as well; Ee is the electronic eigenvalue, which is
in fact the electronic energy of the system whose nuclei
are at a fixed distance rAB from each other. Thus, as
usual, one solves Eq. (4), for a given electronic state, in
order to determine how the electronic energy Ee varies
with respect to rAB and to find the internuclear distance
rAB that minimizes the eigenvalue Ee; we call rABmin and
Eemin, respectively, the internuclear distance and the
eigenvalue in question (for the given electronic state);
this is then rABmin as rAB, to be input into Eq. (3). Nor-
mally, Eemin is negative; however, below, by Eemin we
shall mean |Eemin |.

The constant k0 to be input into Eq. (3) is given by

(5)

(to be determined, for the electronic state of concern,
from Eq. (4)). Knowing k0 and rAB related to the given
electronic state of the diatomic molecule in hand, one
can subsequently construct Eq. (3) and solve it as usual
for the vibrational and also rotational eigenvalues EA, B

h
2

8π2
-------- 1

mA

-------∇ A
2 1

mB

------- ∇ B
2

+ 
 –

1
2
---k0 rAB r–( )2

+ ψA B,

=  EA B, ψA B, ,

h
2

8π2
me

--------------- ∇ ei
2

i

∑– e
2

rii '
-----

i i ',
∑ ZAZBe

2

rAB

------------------+ +




–
ZAe

2

rAi

-----------
i

∑ ZBe
2

rBi

-----------
i

∑–



ψe Eeψe.=

k0
∂2

Ee rAB( )

∂rAB
2

------------------------
rAB rAB min=

=

associated with the electronic state of the molecule of
concern.

EA, B as usual becomes [6]

(6)

IAB is the moment of inertia of the nuclei:

(7)

where �AB is the nuclei reduced mass.
ωA, B is the classical vibrational frequency of the

molecule, the inverse of which, TA, B, is the classical
vibrational period of the molecule,

(8)

(the classical vibrational period for the given electronic
state written on the basis of Eq. (3), where k0 was deter-
mined on the basis of Eq. (4)). Thus, by this definition,
EA, B (as expressed by Eq. (6) above) is the solution of
Eq. (3) for the nuclear motion of the molecule.

THE VIBRATION PERIOD VERSUS
THE DIATOMIC MOLECULE CLOCK MASS 

AND THE INTERNUCLEAR DISTANCE

The Born–Oppenheimer approach, together with
the UMA cast, stated above, i.e., Eq. (2), allows us to
draw an elegant relationship for the vibrational motion
of a diatomic molecule in terms of the different masses
taking part in the internal motion of the molecule and
with the internuclear distance coming into play.

Thus, Eq. (2), i.e., E0kM0k  ~ h2, must hold on the
basis of Eq. (4); this equation indeed embodies a poten-
tial energy term made strictly of Coulomb potential
energies. Furthermore, the only mass that comes into
play in Eq. (4) is the electron mass, me; in other words,
the clock mass in question, to be associated with the
electronic motion of the molecule (with fixed nuclei), is
made up of only the electron masses coming into play,
obviously all bearing the same mass me.

The eigenvalue Ee of Eq. (4) (more precisely,
Ee(rAB)) assumes the value Eemin when rAB takes the
value of rABmin. These quantities will then come to
replace E0k and R0k, respectively, in Eq. (2). Thence,
regarding the electronic motion, Eq. (2) will be written as

(9a)

EA B,
j j 1+( )h

2

8π2
IAB

------------------------ v
1
2
---+ 

  hωA B, ,+=

j 0 1 …; v, , 0 1 …,, ,= =

IAB �ABrAB
2

,=

T A B, 2π �AB

k0
-----------=

R0k
2

Ee minmerAB min
2

h
2∼
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(Eq. (2) written within the framework of Eq. (4)). The
proportionality constant in question is made up of (i) a
geometry factor; (ii) appropriate quantum numbers to
be associated with h2; and, finally, (iii) a dimensionless
and relativistically invariant quantity that will insure
the equality. We will call this quantity gIN, thus associ-
ating it with the invariance (energy)(mass)(size)2,
underlined by Assertion 2.

The quantity gIN is a characteristic of the electronic
structure; we provide a quantum-mechanical definition
of it in the Appendix. At this step, we rewrite Eq. (9a) as

(9b)

(Eq. (2) further elaborated). Equation (9b) is (together
with the quantum numbers that will come into play)
checked elsewhere [7, 8]. Nevertheless, the check of
our end results derived via Eq. (8) should constitute a
proof of its validity.

Ee(rAB) can be as usual expressed fairly well in terms
of the force constant k0, defined by Eq. (5), as

(10)

It is true that this relationship does not display charac-
teristics such as anharmonicity and dissociation; how-
ever, throughout this work, we are going to deal only
with the ground vibrational level of the states of con-
cern. Thus, even when we deal with an excited elec-
tronic state, Eq. (10) turns out to be quite valid for its
ground vibrational level.

Ee(rAB) vanishes at the abscissa rAB, which we can
define with respect to rABmin; i.e.,

(11)

(the value that makes (value which makes Ee(rAB) van-
ish); p is an unknown parameter at this stage, though it
appears to be roughly 2. Equations (10) and (11) pro-
vide us with the possibility of expressing Eemin as

(12)

We plug the right-hand side of this equation into
Eq. (9b); next, we use Eq. (8) to eliminate the force
constant k0; thus, we arrive at a simple expression for
TA, B; i.e.,

(13)

Ee minmerAB min
2

gIN h
2∼

Ee rAB( ) Ee min
1
2
---k0 rAB rAB min–( )2

.+=

rAB prAB min=

Ee min
1
2
---k0 p 1–( )2

rAB min
2

.=

T A B,
1
h
--- gINgk�ABmerAB

2
,∼

where gk replaces (p – 1)2/2.2 
Below, for simplicity, we call TA, B, T0; ωA, B, ω0;

MAB, M0; and rAB, r0.
The quantity

(14)

(the vibrational clock mass) formulated on the basis of
the electron mass, has the dimension of a mass. We call
it the “vibrational clock mass” (to be associated with
the vibrational motion of the diatomic molecule in
hand).

The proportionality constant formulated by Eq. (13)
shall then embody a geometry factor and quantum
numbers. A geometry factor of 2π originates from the
use of Eq. (9) (where h2 may be read as h2/4π2 and,
accordingly, 2π is left after the square rooting on the
way to Eq. (13)); another 2π factor originates from the
use of Eq. (8); thus, altogether, a geometry factor of 4π2

should multiply Eq. (13) (cf. Eqs. (A.3) and (A.4) of the
Appendix).

The quantum numbers to be introduced in Eq. (13)
appear to be more peculiar, and we will elaborate on
this problem in Part 2. Nonetheless, one can sense that
[h2] in Eq. (9) should be in fact read as usual, as [n2h2],
more precisely as [n1n2h2], n1 and n2 being the principal
quantum numbers of electrons making up the bond(s)
of the diatomic molecule in hand [3]. Recall that,
because of quantum defects, n1 and n2 are not integer
numbers. Equation (13) thus becomes

(15a)

(the classical excited vibrational period of the molecule
versus the internuclear distance, n1 and n2 being the
principal quantum numbers of the electrons making up
the excited bond), where now g, an overall, dimension-
less, and relativistically invariant quantity, replaces

2 Note that, via the Bohr atom model, one can write

(i)

for the hydrogen atom, the simplest wavelike entity; here, e is the
electron charge and r0 is the Bohr radius. Equation (i) compared

with Eq. (8) yields e2/  for the force constant k0. This, when

plugged into Eq. (12), leads to |Ee | = (1/2)(p – 1)2e2/a0 for the
magnitude of the electronic energy Ee of the hydrogen atom, a0
being the Bohr atom radius; thus, to develop a sense of the coeffi-
cient (p – 1)2 of Eq. (12), we can conclude that it should be set to
unity for the case of the hydrogen atom, given that |Ee | for this

case can be expressed as (1/2)e2/a0; therefore, for the case of the
hydrogen atom, gk becomes 1/2. At the same time, since p is
related to the electronic structure of the molecule, it is clear that
gk, just like gIN, depends only on this structure. Note that gk is
anyway close to unity.

T0 2π me/ e
2
/r0

3( ),=

r0
3

M0 �0me me �0/me= =

T0
4π2

h n1n2

------------------ g�0mer0
2

=
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gINgk; a quantum-mechanical definition of g is provided
in the Appendix. Note here that the quantum numbers
n1 and n2 are normally associated with the bond elec-
trons of a given diatomic molecule in an excited elec-
tronic state. However, one can as well conjecture them
to be associated with the bond electrons of the ground
state of any diatomic molecule belonging to a given
chemical family, in reference to the ground state of a
diatomic molecule still belonging to this family but
bearing, say, the lowest classical vibrational period,
since g, depending only on the electronic configuration,
will stay nearly constant throughout; we elaborate on
this interesting idea in Part 2.

Thus, we rewrite Eq. (15a), yet now regarding not the
electronic states of a diatomic molecule but instead the
ground states of members of a given chemical family:

(15b)

(the classical ground vibrational period of the molecule
T0G versus its ground internuclear distance r0G, n1 and n2
being the principal quantum numbers of the electrons
making up the bond of the molecule at the ground
level).

Recall that we kept the subscript “0” pinned to the
symbols representing the basic quantities coming into
play in Eq. (15a) to stress the fact that we define them
in the resting framework (versus the corresponding
Lorentz-transformed quantities); in Part 2, to simplify
the notation, we will drop this subscript.

Equation (15a) or (15b), though g is not known
beforehand, turns out to be somewhat rigorous. In other
words, despite the Born–Oppenheimer approximation
we adopted, as well as the approximate Morse potential
we introduced at the level of Eq. (10), the use of g (to

T0G
4π2

h n1n2

------------------ g�0mer0G
2

=

be determined) ultimately insures the equality of these
equations. It becomes apparent that g is necessarily
related to the electronic structure of the molecular
bond; thus, for alike bonds, in a given chemical family,
we come to expect g to be virtually the same; we call g
the “molecular bond looseness factor,” for, as we will
elaborate in the Appendix, its inverse somewhat charac-
terizes the strength of the bond of concern. Numerical
values that g assumes for different molecules will be
provided in Part 2.

CONCLUSIONS

The quantum numbers n1 and n2 that we introduced
in Eqs. (15a) and (15b) should now be determined, and
that is what we will undertake in Part 2, primarily on the
basis of spectroscopic data for the H2 molecule. The
elucidation of an empirical relationship known since
long ago, as well as of irregular H2 spectroscopic data
[9, 10], will then be achieved. Our findings will allow
us to draw up a whole new systematization of diatomic
molecules.

Following the idea we proposed on the extension of
Eq. (15a), it is now worth analyzing the subsequent
Eq. (15b) regarding all diatomic molecules, without
even taking into account the quantum numbers. Indeed,

the plots of T0 versus  for members of a given
chemical family exhibit nicely increasing, almost fault-
less, smooth curves; we present eight examples in
Figs. 1–7. It should be stressed that our approach dis-
closes a simple architecture of diatomic molecules,
which is otherwise concealed behind a much too cum-
bersome quantum-mechanical description. This archi-
tecture, telling how the vibrational period of time, size,
and mass are determined, is Lorentz-invariant and can
be considered as the mechanism of the behavior of the

�0r0
2
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quantities in question in interrelation with each other
when the molecule is brought into uniform translational
motion or transplanted into a gravitational field or, in
fact, any field with which it can interact [11, 12]. This
is the essence of our approach, and it will be further
clarified in Part 2.

APPENDIX

Direct Derivation of the Relationship EemerAB ~ h2

Via the usual weighting and integration of Eq. (4)
over the appropriate space domain, as well as the virial
theorem [13, 14]

(A.1)2 ψeEeψe Vd

space

∫ ψeU0ψe V ,d

space

∫=

where U0 is the potential energy of concern, one can
write

(A.2)

this yields

(A.3)

Ee
h

2

8π2
-------- ψe

1
me

------ ∇ ei
2

i

∑ 
 
 

ψe V ;d

space

∫=

8π2
Eeme

1

ψe ∇ ei
2

i

∑ 
 
 

ψe Vd

space

∫
-------------------------------------------------- h

2
=

0.8

0 4

T0 × 104 c, cm

0.4

8

N2
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P21.2
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, amu1/2 Å2�0
1/2

r0
2
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r0
2
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(the electronic motion equation integrated over the
space).

One can check that, for the simplest real wavelike
entity, i.e., the hydrogen atom, the integral quantity

 turns out to be equal to –n2/ , where

a0 is the Bohr orbit radius and n is the principal quan-
tum number associated with ψe. The quantity

 can further be evaluated within the

framework of an even simpler case, i.e., the particle
moving in just one dimension, in an infinitely high

potential well; the result is –n2π2/ , where now a0 is
used to denominate the width of the well.

For other simple cases, such as the rotational motion
of a diatomic molecule, the integral quantity in question

turns out to be equal to –N/ , where a0 is the space
size in which the dynamics under consideration takes
place and N (equal to J(J + 1) for the rotational motion
of a diatomic molecule) is the composite quantum num-
ber coming into play.

On the basis of these findings, we can define the
dimensionless, positive quantity gIN in regard to the
vibrational motion of a diatomic molecule as

(A.4)

(the quantum-mechanical definition of gIN) in order to
be able to express briefly the integral quantity

 in terms of the average internu-

clear distance rABmin; n1 and n2 are the bond electron
principle quantum numbers. It is clear that gIN depends
only on the electronic structure. Following our
approach, we further expect that gIN is not far from
unity.

At the same time, note that one can write

(A.5)

(written for the ith electron).
Thus, in principle, the more severe the gradient ∇ eiψe

based on Eq. (A.4), the smaller the coefficient gIN will
be. For the bond electrons, the gradient ∇ eiψe is,
roughly speaking, zero in between the nuclei. However,
for a given internuclear distance, the stronger the bond,
the sharper the gradient along paths leading away from
both nuclei will be. Thence, we expect gIN to decrease
as the bond gets tighter.

ψe∇
2ψe Vd

space∫ a0
2

ψe∇
2ψe Vd

space∫

a0
2

a0
2

gIN

n1n2–

rAB min
2 ψe r0( ) ∇ ei

2

i

∑ 
 
 

ψe r0( ) Vd

space

∫
------------------------------------------------------------------------------------=

ψe ∇ ei
2

i∑( )ψe Vd
space∫

ψe∇ ei
2 ψe Vd

space

∫ ∇ eiψe( )2
Vd

space

∫=

It is further of interest to note that, if one defines an
unusual de Broglie relationship for the diatomic mole-
cule under consideration, though in the following
familiar form

(A.6)

(a generalized de Broglie relationship proposed by the
author for a diatomic molecule), v0 being an average
velocity to be associated with the electronic motion,
then one can, via the use of the virial theorem (cf.
Eq. (A.1)), derive in a straightforward way Eq. (A.3), in
which the fraction embodying the integral term shall be
replaced by its homologue defined by Eq. (A.4), i.e., by
gINrABmin.

Equation (A.4) provides us with the possibility of
establishing a quantum-mechanical definition of g of
Eqs. (15),

(A.7)

(a quantum-mechanical definition of g figuring in
Eqs. (15)). Here, p is defined by Eq. (11); i.e., rAB =
prABmin (the internuclear distance that makes Ee(rAB)
vanish); with the thus-defined p, gk is therefore a quan-
tity associated with just the electronic structure; then g,
just like gIN, merely depends on the electronic structure
of the molecule in hand, which leads us to expect g to
indeed stay practically constant for chemically alike
molecules.
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h
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Fig. 7. Period of diatomic molecules made of atoms belong-
ing to, respectively, the fourth and sixth columns of the peri-

odic table versus . �0
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At the same time, one can guess that the greater p,
the smaller the dissociation energy will be and, thus, the
looser the bond under consideration. Therefore, gk

behaves just like gIN in regard to the bond strength. We
conclude that the smaller g, the tighter the bond will be.
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